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Gruppo Nazionale di Struttura della Materia, 841 00-Salerno, Italy 
f G Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, I184-Sofia, 
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Received 9 March 1984 

Abstract. A generalised model, intended to describe a number of quantum systems in the 
presence of short-range correlated quenched impurities, is studied by the renormalisation 
group approach. To first order in E ,  it is shown that the tricritical behaviour is unstable 
towards impurity perturbations for both finite and zero temperatures. A brief discussion 
of the zero-temperature tricriticality in pure systems is also presented. 

The influence of short-range correlated quenched impurities on the static critical 
behaviour of n-vector classical systems is now well established (Lubensky 1975, 
Khmel'nitskii 1975, Grinstein and Luther 1976, Ma 1976, Shalaev 1977). The dynamics 
of these impure systems have been investigated by Grinstein et a1 (1977). More recently, 
the effects of extended (Dorogovstsev 1980a, b, Boyanovsky and Cardy 1982, Prudnikov 
1983) and long-range correlated (Weinrib and Halperin 1983) impurities have also 
been explored. Furthermore, a study of the impurity influence on critical behaviour 
of quantum systems has been made in the short-range (Busiello et a1 1984a, Uzunov 
1984) and long-range (Busiello et a1 1984b) cases respectively. Note that there are not, 
up to now, investigations of impurity influence on systems with tricritical points. 

The present letter is devoted to a renormalisation group (RG) study of this problem. 
Instead of limiting ourselves to classical systems (Wegner and Riedel 1973, Stephen 
and McCauley 1973, Nelson and Fisher 1975, Rudnick and Nelson 1976), we shall 
generalise the discussion starting from a functional model which describes a number 
of quantum systems (see e.g. Hertz 1976, Gerber and Beck 1977, Morf et a1 1977, 
Busiello et a1 1983). In this way, we shall have the possibility to explore the impurity 
effects on zero-temperature quantum tricriticality too. Since the pure tricritical 
behaviour in the quantum regime has not been investigated up to now, a brief discussion 
of this subject is also included. 

The generalised d-dimensional quantum model we consider is described by the 
functional 

1 w+, V I  = c ( r  +ck" +g(q))l+"I2 +V,/, c d k l -  wfc(h, @/)+0(k2, @ I )  
0 . q  a r k ,  k2:wi 
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U6 T2 +- c c L ~ ( 9 l ) ~ ~ ( q 2 ) c L ~ ( q ~ ) c L ~ ( q 4 ) c L ~ ( q ~ ) c L y ( q ,  + q 2 + q 3 - 9 4 - 9 5 )  
6V2 Q . P . Y : 4 I  q <  

(1) 

where q = (k ,  U / ) ,  k is the wavevector with a cut-off, or = 2 d T  ( K B =  h = I ,  I = 
0, f 1, .  . . ), T is the temperature, $(q) -  {$a(4); cy = 1 , .  . . , n/2 ;  n 3 2} is a complex 
(n/2)-component field and V is the volume. In (l) ,  O <  us 2, q ( k )  is a random function 
describing the impurities and  the function g ( q )  and the definition of the parameters 
r, c, u4, u6 depend on the particular model under study. Here, it is assumed that q ( k )  
is governed by a Gaussian distribution with average 

[P(k)V(k')],, = ASk,-k,, AZO. (2) 

For the functior g ( q )  we consider the form 

(3) 

where m ' Z  0 and  m 3 1. The expression (3) is quite general and  describes several 
quantum systems: (i) the X Y  model (Gerber and Beck 1977, Kopec and Kozlowski 
1983) and  the Bose gas (Busiello and De Cesare 1980, Uzunov 1981, Walasek 1983) 
for m' = 0 and f ( w , )  = -iw,; (ii) structural phase transitions (Morf et a1 1977, Millev 
and  Uzunov 1983) for m'= 0 and m = 2 ;  (iii) superconductors (Uzunov 1980) for m'= 0 
and m = 1 ; (iv) itinerant magnets (Hertz 1976); (v) exciton phase transitions (Baba et 
a1 1979) for m ' =  0 and  m = 1 or 2. 

Our investigation is conveniently performed in the framework of the differential 
RG equations (Wegner and  Houghton 1973, Rudnick and Nelson 1976) without using 
the replica trick. In the usual RG transformation, the rescaling factors are b = er ( I  z 0) 
for the wavevectors and  &=e'(l-1'2) for the order parameter, where 7 is the Fisher 
exponent. Here, we d o  not find it necessary to rescale the frequencies and we assume 
units in which A = c = 1. Since, in any case, there are no  k"-type contributions to first 
order in E = d,, - d, where d,, is the upper critical space dimensionality, we obtain 
7 = 2 -U. Furthermore, the following recursion relation for the temperature (or f ( w , ) )  
is found: 

d T / d l =  z(A)T (4) 
where 

and K d  = 2'-d.rr-d'2/r(d/2). As we see, an  O ( E )  contribution to the dynamical critical 
exponent z = z(A*) at a random fixed point (RFP) is possible only if m'= 0. If m' f 0, 
&-corrections to z are expected to second order in E. Formally ( 5 )  is also true for case 
(i) with m = 1. The RG equations for the parameters r, U = u4T, w = u6T2 and A are 

d r / d l = u r + a ( n  +2)KdS,(r, T)u-&A/(1 +r ) ,  

d U /  d f = (2U - d )  U - [( n + 6)S2( r, T )  + 2 s,( r, T ) ]  U' 4- (n + 4) &SI ( r, T )  W 

+6KduA/(l +r)2, 
(6) d w / d 1 = ( 3 ~ - 2 d ) w - a K d [ ( n  +Io)s2(r,  T)+4S2(r, T)]uw +15KdwA/(l +r)2,  

dA/dl = (20. - d)A +4&A2/( 1 + r)'- f ( n  +2)KdS2(r, T)uA, 
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In (7), G , = [ r + k "  +g(q ) ] - '  and the summation with T + O *  is necessary only when 
f ( w l )  = -iol. 

Now we perform the analysis of (4)-(6) for the two different regimes T # 0 and 
T = 0 .  First we consider the finite-temperature classical behaviour. In this case the 
Matsubara frequencies are irrelevant for the static scaling behaviour and we can neglect 
(4), (5) as well as the frequencies wI # 0 in (6). Thus, for any model, one obtains 

d r  n + 2  v A _-  -Uf'+-&--Kd-, 
d l  4 l + r  l + r  

These equations are a direct generalisation of those presented in previous papers 
(Rudnick and Nelson 1976, Blankschtein and Aharony 1983) for pure classical systems. 
For a discussion of the tricritical or critical behaviour, as usual, we determine the fixed 
points of (8) and the exponents A ,  ( i  = r, U, w, A) which enter the linearised version of 
(8) around each fixed point (FP). 

A Gaussian fixed point (GFP) ( r*  = U* = w* = A* = 0) always exists and the corres- 
ponding exponents {A:"'} are A\"' = U, A',"' = A(G' A = 2 u - d  and A':'=3~-2d. It is 
stable for d > 2w, describing a Gaussian critical behaviour, and doubly unstable towards 
both U and A perturbations for jus d < 2u. Since in the pure case the GFP is assumed 
to describe a tricritical behaviour for Sa s d < 217, the last result indicates an instability 
of tricriticality towards the randomness. Here we shall not be concerned with the 
region d < $7 where non-Gaussian tricritical exponents appear for pure classical 
systems (Stephen and McCauley 1973). By using E = 2 u  - d as expansion parameter 
the usual pure FP and the RFP (Lubensky 1975, Ma 1976), with the additional coordinate 
w*=O, appear which are both stable towards w perturbation since ALP'= 

-u - [ (n+26) / (n+8) ]&<0  and A',R'=--c~-5(n+8)/8(n-l)<0. They govern the 
critical pure and random behaviour for n > 4 and 2 s n < 4 respectively. When the RFP 

is stable, equation ( 5 )  for m'=O gives the dynamical critical exponent z =  
v / m + ( l / m ) [ ( 4 - n ) / 8 ( n - l ) ] &  ( m 2  1). 

We now consider the zero-temperature quantum behaviour. The appropriate RG 

equations for the parameters r, u4, u6, A are obtained from (6) taking into account (5) 
and then setting T = 0 .  They are 

d r / d l =  vr +$(n +2)KdF,(r, 0)u4- &A/(I + r ) ,  

d u 4 / d l = ( 2 u - d - Z Z g ) U 4 - f K d [ ( n  +6)F2(r, O)+2p2(r,0)]u: 

+(6- 6mt,o/m)Kd4Li/(1 +rI2, 
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dU,/dl= (3U - 2d - 2Zo)U6 - $Kd [( n + 1 0)F2( r, 0) +4F2( r, o)]u4u6 

+(15-26,,,/m)KdUgA/(l + r ) 2 ,  

dA/dl = (2u  - d)A + 4Kd A2/(  1 + r)’ - ;( n + 2) KdF2( r, O)u,A, 

(9) 

where z,=(u+m‘)/m and F,(r, T ) =  TS,(r, T ) ( i =  1,2), F2(r,  T ) =  Ts2(r, T ) .  Thefunc-  
tions Fj(r ,  0) and F2(r, 0) are different for different models. Here, we shall discuss only 
two models so that the main features of the ( T  = 0) tricritical behaviour will be clarified. 
( a )  Non-ideal Bose gas 
The ( T  = 0) RG equations are obtained from (9) with Fr(r, 0) = 0 (i = 1,2), p2(r,  0) = 
i( l  + r ) - ’ ,  m = 1 and  m‘ = 0 ( z o  = U ) .  Firstly, we briefly discuss the pure tricritical 
behaviour, setting in (9) A = 0 so that z = U +O(E’). In  this situation, a G F P  ( r*  = U: = 
U: = 0) always exists with exponents AJG’ = U, A‘:) = U - d and A(:) = U - 2d. It is stable 
for d > U, describing a Gaussian critical behaviour, and  unstable towards the parameter 
u4 for $U< d < U (the region d <;U is not of real interest as O <  u / 2 c  1). Thus the 
G F P  describes the tricriticality for ;U< d < U and a dimensional crossover d + d + U  

takes place for T - .  0 as obtained before for criticality (Hertz 1976, Busiello et a1 1983). 
I f  we assume E = U - d as expansion parameter, the non-trivial FP ( r*  = 0, U: = (4/ Kd)E, 
U: = 0) appears with A, = U, A,, = -E, A,, = 2.5 - U < 0, which describes a pseudogaussian 
transition for d < U (De Cesare 1978, Busiello and De Cesare 1980, Uzunov 1981). Of 
course a critical-tricritical crossover occurs in the domain $U < d < U (Blankschtein 
and Aharony 1983). 

Now we are in a position to investigate the effect of impurities ( A  # 0). The fourth 
of equations (9) gives two FP values A* = 0 and  A* = -&/4Kd  with E = 2 u  - d. The 
latter corresponds to a RFP which is unphysical (A* < 0) for d < 2 u  and physical but 
unstable (AT’= - E  > 0) for d > 2u. Thus, the only type of FP we have is characterised 
by the value A *  = O .  This is in complete contrast with the (TZ 0) case where one 
obtains a value A* = O(E)  and hence an  E correction to the dynamic exponent z = z(A*). 
It is quite easy to see from (9) that the possible pure FPS with A * = O ,  intended to 
describe either criticality or tricriticality, are unstable towards A perturbation for d < 2u. 
For d > 2 u ,  the behaviour of the random system is governed by the stable GFP 
( A i G )  = 2 u -  d < 0) and  we would have a Gaussian transition with v = A;’ = I/u, 7 = 
2 - U, z = U. These results for criticality have already been derived previously (Busiello 
et a1 1984a, Uzunov 1984). 
( b )  Structural phase transitions 
The appropriate RG equations can be obtained by setting in equations (9) m‘ = 0, m = 2 
( z o = u / 2 ) ,  F,( r ,O)=f( l  + r ) - ’ 1 2  and F 2 ( r , 0 ) =  p2(r,0)=i(l +r) -3 ’2 .  In contrast with the 
bosonic case, they contain the order parameter dimensionality n. The pure tricriticality 
(A= 0) can be discussed as for the Bose system. The GFP with exponents AIG’=  U, 

2u - d, A‘:’ = 2(u  - d )  is unstable towards u4 for U S  d <;U and describes the 
tricriticality. The usual criticality is governed by the FP ( r*  = -(2/u)[(n +2)/(n + 8 ) ] ~ ,  
U: = [ 16/ K d (  n + 8 ) ] ~ ,  U,* = 0) where E = - d,  stable for d <;U and by the GFP stable 
for d > ?U. Also in this case a dimensional crossover d + d + u / 2  occurs for T + 0. 

When disorder is present, as for the Bose gas, the only type of physical FP is 
characterised by the value A* = 0. Also here we find that the pure critical and tricritical 
behaviours are unstable towards impurities for d < 2u and a Gaussian behaviour occurs 
for d > 2u. 

The previous ( T  = 0) results are true also for other quantum models with z = 
( u + m ’ ) / m  +O(E’). In general, as for criticality, the tricritical behaviour for pure 

A(G)  = 1 
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systems obeys a dimensional crossover d + d + z and is unstable towards an appearance 
of impurities for any n and d < 2u. 

One of us (DIU) thanks the Department of Theoretical Physics of Salerno University 
for warm hospitality during the work on the essential part of this paper. 
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